Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α

نویسندگان

  • Aanchal Katoch
  • Biju George
  • Amrutha Iyyappan
  • Debjit Khan
  • Saumitra Das
چکیده

p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay between RNA-binding protein HuR and microRNA-125b regulates p53 mRNA translation in response to genotoxic stress

Tumor suppressor protein p53 plays a crucial role in maintaining genomic integrity in response to DNA damage. Regulation of translation of p53 mRNA is a major mode of regulation of p53 expression under genotoxic stress. The AU/U-rich element-binding protein HuR has been shown to bind to p53 mRNA 3'UTR and enhance translation in response to DNA-damaging UVC radiation. On the other hand, the micr...

متن کامل

A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression.

As bona fide p53 transcriptional targets, miR-34 microRNAs (miRNAs) exhibit frequent alterations in many human tumor types and elicit multiple p53 downstream effects upon overexpression. Unexpectedly, miR-34 deletion alone fails to impair multiple p53-mediated tumor suppressor effects in mice, possibly due to the considerable redundancy in the p53 pathway. Here, we demonstrate that miR-34a repr...

متن کامل

مقایسه بروز پروتئین p53 در گروه پرتوکاران با گروه شاهد

  Background : Various stresses such as ionizing radiation can increase cellular damage, especially to nuclear DNA. To protect cellular damages, normal regulatory genes (such as Tp53 tumor suppressor) become activated. Accordingly, in this study, the p53 gene and its expression among employees occupationally exposed to low doses of ionizing radiation were compared with a selected control group....

متن کامل

miR-150, p53 protein and relevant miRNAs consist of a regulatory network in NSCLC tumorigenesis.

microRNAs (miRNAs) are a class of non-coding small RNAs that act as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs. Tumor protein p53, a transcriptional factor, plays an important role in the progression of tumorigenesis. miR-150 was the only miRNA predicted to target 3'-UTR of p53 by Targetscan. In order to investigate the function of m...

متن کامل

Δ40p53α suppresses tumor cell proliferation and induces cellular senescence in hepatocellular carcinoma cells

Splice variants of certain genes impact on genetic biodiversity in mammals. The tumor suppressor TP53 gene (encoding p53) plays an important role in the regulation of tumorigenesis in hepatocellular carcinoma (HCC). Δ40p53α is a naturally occurring p53 isoform that lacks the N-terminal transactivation domain, yet little is known about the role of Δ40p53α in the development of HCC. Here, we firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017